A mitochondrial disease model is generated and corrected using engineering editors in rat zygotes

Kim, JS & Chen, J. Basic edition of organal DNA with programmable absorbers. Nat. Rev. Mol. Cell biol. 2534–45 (2024).
Google Scholar
Stewart, JB current progress with models of mitochondrial DNA disease mammals. J. inheritance. Metab. Say. 44325–342 (2021).
Google Scholar
Silva-Pinheiro, P. and Minczuk, M. The potential of engineering of the mitochondrial genome. Nat. Rev. Broom. 23199–214 (2022).
Google Scholar
Russell, OM, Gorman, GS, Lightowlers, RN & Turnbull, DM Mitochondrial Diseases: Hope for the Future. Cell 181168–188 (2020).
Google Scholar
Mok, by et al. A bacterial toxin of Cytidine Désiminase allows the mitochondrial basic publishing without TRISPR. Nature 583631–637 (2020).
Google Scholar
Cho, si et al. Basic edition A to G targeted in human mitochondrial DNA with programmable summary. Cell 1851764–1776 (2022).
Google Scholar
Gorman, GS et al. Mitochondrial diseases. Nat Rev Di Primers 216080 (2016).
Google Scholar
Patananan, an, wu, th, chiou, py & teitell, my modifying the mitochondrial genome. Cellular metab. 23785–796 (2016).
Google Scholar
Cho, si et al. The symptoms linked to the engineering tale to facilitate the basic edition of precision adenine in mitochondrial DNA. Cell 18795–109 (2024).
Google Scholar
Chen, L. et al. Starting a specific publisher of the Adenine database with a minimum modification of passerby. Nat. Chem. Biol. 19101–110 (2023).
Google Scholar
Zhang, X. et al. Precise modeling of mitochondrial diseases using optimized mitobes. Nature 639735–745 (2025).
Google Scholar
Chen, L. et al. Effective mitochondrial editors effective A-SA G for the generation of models of mitochondrial diseases. Nat. Biotechnol. https://doi.org/10.1038/s41587-025-02685-x (2025).
Google Scholar
Khoo, A. et al. Progressive myoclonic epilepsy due to a rare mitochondrial nd6 mutation, M.14487T> c. BMJ Neurol. Open 3E000180 (2021).
Google Scholar
Thorburn, Dr, Rahman, J. & Rahman, S. Mitochondrial DNA associated with Leigh and NARP syndrome. In Geneva (Eds Adam, MP et al.) (University of Washington, 1993).
Dermaut, B. et al. Progressive myoclonic epilepsy as manifestation of adult appearance of Leigh syndrome due to M.14487T> c. J. Neurol. Neurosurg. Psychiatry 8190–93 (2010).
Google Scholar
LIM, K. Edition of the Mitochondrial genome: strategies, challenges and applications. BMB RAP. 5719-29 (2024).
Google Scholar
Mok, by et al. Basic publishers without CRISPR with improved activity and extended targeting range in mitochondrial and nuclear DNA. Nat. Biotechnol. 401378–1387 (2022).
Google Scholar
Lee, S., Lee, H., Baek, G. & Kim, JS Mitochondrial DNA Edition with basic publishers derived from high -fidelity DDDA. Nat. Biotechnol. 41378–386 (2023).
Google Scholar
Lei, Z. et al. The mitochondrial basic editor induces nuclear mutations on substantial targets. Nature 606804–811 (2022).
Google Scholar
Adashi, Ey, Rubenstein, DS, Mossman, Ja, Schon, EA & Cohen, Mitochondrial IL IL MORDOL: Replace or modify? Science 3731200–1201 (2021).
Google Scholar
Chen, L. et al. Adenine transversion publishers allow a basic modification to C • G to C • G in cells and mammal embryos. Nat. Biotechnol. 42638–650 (2024).
Google Scholar
Zhang, X. et al. Increase the efficiency and targeting range of basic Cytidine publishers by fusion of a single -strand DNA binding domain. Nat. Cell biol. 22740–750 (2020).
Google Scholar
Hwang, Gh et al. Web design and analysis tools for CRISPR basic edition. BMC bioinformatics 19542 (2018).
Google Scholar